A priori error estimates of Adams-Bashforth discontinuous Galerkin Methods for scalar nonlinear conservation laws
نویسندگان
چکیده
منابع مشابه
Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: divided difference estimates and accuracy enhancement
In this paper, an analysis of the accuracy-enhancement for the discontinuous Galerkin (DG) method applied to one-dimensional scalar nonlinear hyperbolic conservation laws is carried out. This requires analyzing the divided difference of the errors for the DG solution. We therefore first prove that the [Formula: see text]-th order [Formula: see text] divided difference of the DG error in the [Fo...
متن کاملA priori error estimates for numerical methods for scalar conservation laws. Part I: The general approach
In this paper, we construct a general theory of a priori error estimates for scalar conservation laws by suitably modifying the original Kuznetsov approximation theory. As a first application of this general technique, we show that error estimates for conservation laws can be obtained without having to use explicitly any regularity properties of the approximate solution. Thus, we obtain optimal...
متن کاملError Estimates of Approximate Solutions for Nonlinear Scalar Conservation Laws
There has been an enormous amount of work on error estimates for approximate solutions to scalar conservation laws. The methods of analysis include matching the traveling wave solutions, [8, 24]; matching the Green function of the linearized problem [21]; weak W convergence theory [32]; the Kruzkov-functional method [19]; and the energy-like method [34]. The results on error estimates include: ...
متن کاملError estimates to smooth solutions of semi-discrete discontinuous Galerkin methods with quadrature rules for scalar conservation laws
In this paper, we focus on error estimates to smooth solutions of semi-discrete discontinuous Galerkin (DG) methods with quadrature rules for scalar conservation laws. The main techniques we use are energy estimate and Taylor expansion first introduced by Zhang and Shu in [24]. We show that, with P k (piecewise polynomials of degree k) finite elements in 1D problems, if the quadrature over elem...
متن کاملStability analysis and error estimates of Lax-Wendroff discontinuous Galerkin methods for linear conservation laws
In this paper, we analyze the Lax-Wendroff discontinuous Galerkin (LWDG) method for solving linear conservation laws. The method was originally proposed by Guo et al. in [11], where they applied local discontinuous Galerkin (LDG) techniques to approximate high order spatial derivatives in the Lax-Wendroff time discretization. We show that, under the standard CFL condition τ ≤ λh (where τ and h ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Numerical Mathematics
سال: 2018
ISSN: 1570-2820,1569-3953
DOI: 10.1515/jnma-2017-0011